الرياضيات الأساسية الأمثلة

Resolver para y الجذر الرابع لـ 4y^2-3=-y
خطوة 1
لحذف الجذر في المتعادل الأيسر، ارفع كلا المتعادلين إلى القوة .
خطوة 2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم لكتابة في صورة .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 2.2.1.2
بسّط.
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
طبّق قاعدة الضرب على .
خطوة 2.3.1.2
ارفع إلى القوة .
خطوة 2.3.1.3
اضرب في .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
عوّض بـ في المعادلة. سيسهّل ذلك استخدام الصيغة التربيعية.
خطوة 3.3
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
أخرِج العامل من .
خطوة 3.3.1.3
أعِد كتابة بالصيغة .
خطوة 3.3.1.4
أخرِج العامل من .
خطوة 3.3.1.5
أخرِج العامل من .
خطوة 3.3.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.3.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.3.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
أضف إلى كلا المتعادلين.
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3.8
عوّض بالقيمة الحقيقية لـ مرة أخرى في المعادلة المحلولة.
خطوة 3.9
أوجِد قيمة في المعادلة الأولى.
خطوة 3.10
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.10.2
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.10.2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.10.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.11
أوجِد قيمة في المعادلة الثانية.
خطوة 3.12
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.12.1
احذِف الأقواس.
خطوة 3.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.12.3
أي جذر لـ هو .
خطوة 3.12.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.12.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.12.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.12.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.13
حل هو .
خطوة 4
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: